Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 17(1): 175, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570784

RESUMO

BACKGROUND: Helminth extracellular vesicles (EVs) are known to have a three-way communication function among parasitic helminths, their host and the host-associated microbiota. They are considered biological containers that may carry virulence factors, being therefore appealing as therapeutic and prophylactic target candidates. This study aims to describe and characterise EVs secreted by Sparicotyle chrysophrii (Polyopisthocotyla: Microcotylidae), a blood-feeding gill parasite of gilthead seabream (Sparus aurata), causing significant economic losses in Mediterranean aquaculture. METHODS: To identify proteins involved in extracellular vesicle biogenesis, genomic datasets from S. chrysophrii were mined in silico using known protein sequences from Clonorchis spp., Echinococcus spp., Fasciola spp., Fasciolopsis spp., Opisthorchis spp., Paragonimus spp. and Schistosoma spp. The location and ultrastructure of EVs were visualised by transmission electron microscopy after fixing adult S. chrysophrii specimens by high-pressure freezing and freeze substitution. EVs were isolated and purified from adult S. chrysophrii (n = 200) using a newly developed ultracentrifugation-size-exclusion chromatography protocol for Polyopisthocotyla, and EVs were characterised via nanoparticle tracking analysis and tandem mass spectrometry. RESULTS: Fifty-nine proteins involved in EV biogenesis were identified in S. chrysophrii, and EVs compatible with ectosomes were observed in the syncytial layer of the haptoral region lining the clamps. The isolated and purified nanoparticles had a mean size of 251.8 nm and yielded 1.71 × 108 particles · mL-1. The protein composition analysis identified proteins related to peptide hydrolases, GTPases, EF-hand domain proteins, aerobic energy metabolism, anticoagulant/lipid-binding, haem detoxification, iron transport, EV biogenesis-related, vesicle-trafficking and other cytoskeletal-related proteins. Several identified proteins, such as leucyl and alanyl aminopeptidases, calpain, ferritin, dynein light chain, 14-3-3, heat shock protein 70, annexin, tubulin, glutathione S-transferase, superoxide dismutase, enolase and fructose-bisphosphate aldolase, have already been proposed as target candidates for therapeutic or prophylactic purposes. CONCLUSIONS: We have unambiguously demonstrated for the first time to our knowledge the secretion of EVs by an ectoparasitic flatworm, inferring their biogenesis machinery at a genomic and transcriptomic level, and by identifying their location and protein composition. The identification of multiple therapeutic targets among EVs' protein repertoire provides opportunities for target-based drug discovery and vaccine development for the first time in Polyopisthocotyla (sensu Monogenea), and in a fish-ectoparasite model.


Assuntos
Vesículas Extracelulares , Platelmintos , Dourada , Trematódeos , Animais , Proteômica , Dourada/parasitologia
2.
Plant Sci ; 343: 112060, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38460554

RESUMO

Micronutrient manipulation can enhance crop resilience against pathogens, but the mechanisms are mostly unknown. We tested whether priming Capsicum annuum plants with zinc (5 µM Zn) or manganese (3 µM Mn) for six weeks increases their immunity against the generalist necrotroph Botrytis cinerea compared to deficient (0.1 µM Zn, 0.02 µM Mn) and control conditions (1 µM Zn, 0.6 µM Mn). Zinc priming reduced the pathogen biomass and lesion area and preserved CO2 assimilation and stomatal conductance. Zinc mobilization at the infection site, visualized by micro-X-ray fluorescence, was accompanied by increased Zn protein binding obtained by size exclusion HPLC-ICP/MS. A common metabolic response to fungal infection in Zn- and Mn-primed plants was an accumulation of corchorifatty acid F, a signaling compound, and the antifungal compound acetophenone. In vitro tests showed that the binding of Zn2+ increased, while Mn2+ binding decreased acetophenone toxicity against B. cinerea at concentrations far below the toxicity thresholds of both metals in unbound (aquo complex) form. The metal-specific response to fungal infection included the accumulation of phenolics and amino acids (Mn), and the ligand isocitrate (Zn). The results highlight the importance of Zn for pepper immunity through direct involvement in immunity-related proteins and low molecular weight Zn-complexes, while Mn priming was inefficient.


Assuntos
Capsicum , Micoses , Zinco , Capsicum/microbiologia , Botrytis/fisiologia , Acetofenonas , Doenças das Plantas/microbiologia
3.
New Phytol ; 241(3): 1236-1249, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37986097

RESUMO

Biogenesis of the photosynthetic apparatus requires complicated molecular machinery, individual components of which are either poorly characterized or unknown. The BtpA protein has been described as a factor required for the stability of photosystem I (PSI) in cyanobacteria; however, how the BtpA stabilized PSI remains unexplained. To clarify the role of BtpA, we constructed and characterized the btpA-null mutant (ΔbtpA) in the cyanobacterium Synechocystis sp. PCC 6803. The mutant contained only c. 1% of chlorophyll and nearly no thylakoid membranes. However, this strain, growing only in the presence of glucose, was genetically unstable and readily generated suppressor mutations that restore the photoautotrophy. Two suppressor mutations were mapped into the hemA gene encoding glutamyl-tRNA reductase (GluTR) - the first enzyme of tetrapyrrole biosynthesis. Indeed, the GluTR was not detectable in the ΔbtpA mutant and the suppressor mutations restored biosynthesis of tetrapyrroles and photoautotrophy by increased GluTR expression or by improved GluTR stability/processivity. We further demonstrated that GluTR associates with a large BtpA oligomer and that BtpA is required for the stability of GluTR. Our results show that the BtpA protein is involved in the biogenesis of photosystems at the level of regulation of tetrapyrrole biosynthesis.


Assuntos
Cianobactérias , Tilacoides , Tilacoides/metabolismo , Clorofila/metabolismo , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/metabolismo , Tetrapirróis/metabolismo , Cianobactérias/metabolismo
4.
Biochim Biophys Acta Bioenerg ; 1865(1): 149015, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37742749

RESUMO

The aim of this study was to investigate how acclimation to medium-level, long-term, non-lethal iron limitation changes the electron flux around the Photosystem II of the oceanic diazotroph Trichodesmium erythraeum IMS101. Fe availability of about 5× and 100× lower than a replete level, i.e. conditions common in the natural environment of this cyanobacterium, were applied in chemostats. The response of the cells was studied not only in terms of growth, but also mechanistically, measuring the chlorophyll fluorescence of dark-adapted filaments via imaging fluorescence kinetic microscopy (FKM) with 0.3 ms time resolution. Combining these measurements with those of metal binding to proteins via online coupling of metal-free HPLC (size exclusion chromatography SEC) to sector-field ICP-MS allowed to track the fate of the photosystems, together with other metalloproteins. General increase of fluorescence has been observed, with the consequent decrease in the quantum yields φ of the PSII, while the efficiency ψ of the electron flux between PSII and the PSI remained surprisingly unchanged. This indicates the ability of Trichodesmium to cope with a situation that makes assembling the many iron clusters in Photosystem I a particular challenge, as shown by decreasing ratios of Fe to Mg in these proteins. The negative effect of Fe limitation on PSII may also be due to its fast turnover. A broader view was obtained from metalloproteomics via HPLC-ICP-MS, revealing a differential protein expression pattern under iron limitation with a drastic down-regulation especially of iron-containing proteins and some increase in low MW metal-binding complexes.


Assuntos
Metaloproteínas , Trichodesmium , Trichodesmium/metabolismo , Ferro/metabolismo , Metaloproteínas/metabolismo , Elétrons , Aclimatação
5.
Biochim Biophys Acta Bioenerg ; 1865(1): 149017, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37827327

RESUMO

Membrane-bound FtsH proteases are universally present in prokaryotes and in mitochondria and chloroplasts of eukaryotic cells. These metalloproteases are often critical for viability and play both protease and chaperone roles to maintain cellular homeostasis. In contrast to most bacteria bearing a single ftsH gene, cyanobacteria typically possess four FtsH proteases (FtsH1-4) forming heteromeric (FtsH1/3 and FtsH2/3) and homomeric (FtsH4) complexes. The functions and substrate repertoire of each complex are however poorly understood. To identify substrates of the FtsH4 protease complex we established a trapping assay in the cyanobacterium Synechocystis PCC 6803 utilizing a proteolytically inactivated trapFtsH4-His. Around 40 proteins were specifically enriched in trapFtsH4 pulldown when compared with the active FtsH4. As the list of putative FtsH4 substrates contained Ycf4 and Ycf37 assembly factors of Photosystem I (PSI), its core PsaB subunit and the IsiA chlorophyll-binding protein that associates with PSI during iron stress, we focused on these PSI-related proteins. Therefore, we analysed their degradation by FtsH4 in vivo in Synechocystis mutants and in vitro using purified substrates. The data confirmed that FtsH4 degrades Ycf4, Ycf37, IsiA, and also the individual PsaA and PsaB subunits in the unassembled state but not when assembled within the PSI complexes. A possible role of FtsH4 in the PSI life-cycle is discussed.


Assuntos
Peptídeo Hidrolases , Synechocystis , Peptídeo Hidrolases/metabolismo , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Metaloproteases/genética , Metaloproteases/metabolismo , Synechocystis/genética , Synechocystis/metabolismo
6.
Biochim Biophys Acta Bioenerg ; 1865(1): 149018, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37852568

RESUMO

Low Zn availability in soils is a problem in many parts of the world, with tremendous consequences for food and feed production because Zn deficiency affects the yield and quality of plants. In this study we investigated the consequences of Zn-limitation in hydroponically cultivated soybean (Glycine max L.) plants. Parameters of photosynthesis biophysics were determined by spatially and spectrally resolved Kautsky and OJIP fluorescence kinetics and oxygen production at two time points (V4 stage, after five weeks, and pod development stage, R5-R6, after 8-10 weeks). Lower NPQ at 730 nm and lower quantum yield of electron transport flux until PSI acceptors were observed, indicating an inhibition of the PSI acceptor side. Metalloproteomics showed that down-regulation of Cu/Zn-superoxide dismutase (CuZnSOD) and Zn­carbonic anhydrase (CA) were primary consequences of Zn-limitation. This explained the effects on photosynthesis in terms of decreased use of excitons, which consequently led to oxidative stress. Indeed, untargeted metabolomics revealed an accumulation of lipid oxidation products in the Zn-deficient leaves. Further response to Zn deficiency included up-regulation of gene expression of cell wall metabolism, response to (a)biotic stressors and antioxidant activity, which correlated with accumulation of antioxidants, Vit B6, (iso)flavonoids and phytoalexins.


Assuntos
Clorofila , Soja , Transporte de Elétrons , Soja/genética , Clorofila/metabolismo , Transcriptoma , Metaboloma , Antioxidantes , Zinco
7.
Cell Rep ; 42(11): 113265, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37864789

RESUMO

In natural environments, photosynthetic organisms adjust their metabolism to cope with the fluctuating availability of combined nitrogen sources, a growth-limiting factor. For acclimation, the dynamic degradation/synthesis of tetrapyrrolic pigments, as well as of the amino acid arginine, is pivotal; however, there has been no evidence that these processes could be functionally coupled. Using co-immunopurification and spectral shift assays, we found that in the cyanobacterium Synechocystis sp. PCC 6803, the arginine metabolism-related ArgD and CphB enzymes form protein complexes with Gun4, an essential protein for chlorophyll biosynthesis. Gun4 binds ArgD with high affinity, and the Gun4-ArgD complex accumulates in cells supplemented with ornithine, a key intermediate of the arginine pathway. Elevated ornithine levels restricted de novo synthesis of tetrapyrroles, which arrested the recovery from nitrogen deficiency. Our data reveal a direct crosstalk between tetrapyrrole biosynthesis and arginine metabolism that highlights the importance of balancing photosynthetic pigment synthesis with nitrogen homeostasis.


Assuntos
Synechocystis , Synechocystis/metabolismo , Clorofila/metabolismo , Arginina/metabolismo , Ornitina , Nitrogênio
9.
Photosynth Res ; 152(3): 317-332, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35218444

RESUMO

High-light-inducible proteins (Hlips) are single-helix transmembrane proteins that are essential for the survival of cyanobacteria under stress conditions. The model cyanobacterium Synechocystis sp. PCC 6803 contains four Hlip isoforms (HliA-D) that associate with Photosystem II (PSII) during its assembly. HliC and HliD are known to form pigmented (hetero)dimers that associate with the newly synthesized PSII reaction center protein D1 in a configuration that allows thermal dissipation of excitation energy. Thus, it is expected that they photoprotect the early steps of PSII biogenesis. HliA and HliB, on the other hand, bind the PSII inner antenna protein CP47, but the mode of interaction and pigment binding have not been resolved. Here, we isolated His-tagged HliA and HliB from Synechocystis and show that these two very similar Hlips do not interact with each other as anticipated, rather they form HliAC and HliBC heterodimers. Both dimers bind Chl and ß-carotene in a quenching conformation and associate with the CP47 assembly module as well as later PSII assembly intermediates containing CP47. In the absence of HliC, the cellular levels of HliA and HliB were reduced, and both bound atypically to HliD. We postulate a model in which HliAC-, HliBC-, and HliDC-dimers are the functional Hlip units in Synechocystis. The smallest Hlip, HliC, acts as a 'generalist' that prevents unspecific dimerization of PSII assembly intermediates, while the N-termini of 'specialists' (HliA, B or D) dictate interactions with proteins other than Hlips.


Assuntos
Complexos de Proteínas Captadores de Luz , Synechocystis , Proteínas de Bactérias/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Synechocystis/metabolismo , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo
10.
Int J Mol Sci ; 22(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361011

RESUMO

Many lepidopteran larvae produce silk feeding shelters and cocoons to protect themselves and the developing pupa. As caterpillars evolved, the quality of the silk, shape of the cocoon, and techniques in forming and leaving the cocoon underwent a number of changes. The silk of Pseudoips prasinana has previously been studied using X-ray analysis and classified in the same category as that of Bombyx mori, suggesting that silks of both species have similar properties despite their considerable phylogenetic distance. In the present study, we examined P. prasinana silk using 'omics' technology, including silk gland RNA sequencing (RNA-seq) and a mass spectrometry-based proteomic analysis of cocoon proteins. We found that although the central repetitive amino acid sequences encoding crystalline domains of fibroin heavy chain molecules are almost identical in both species, the resulting fibers exhibit quite different mechanical properties. Our results suggest that these differences are most probably due to the higher content of fibrohexamerin and fibrohexamerin-like molecules in P. prasinana silk. Furthermore, we show that whilst P. prasinana cocoons are predominantly made of silk similar to that of other Lepidoptera, they also contain a second, minor silk type, which is present only at the escape valve.


Assuntos
Bombyx/genética , Evolução Molecular , Fibroínas/genética , Animais , Bombyx/classificação , Bombyx/metabolismo , Glândulas Exócrinas/metabolismo , Fibroínas/química , Filogenia , Proteoma/genética , Proteoma/metabolismo , Transcriptoma
11.
Insect Biochem Mol Biol ; 130: 103527, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33476773

RESUMO

Many lepidopteran larvae produce silk secretions to build feeding tubes and cocoons that play important protective roles in their lives. Recent research on the silk of bombycoid and pyralid moths has shown that it contains several highly abundant silk components with remarkable mechanical properties. It was also found to contain a number of other proteins of which the functions have yet to be identified. To gain an overview of the silk composition in more primitive lepidopteran species and to identify the core silk components common to most species, we analyzed the cocoon proteins of Tineola bisselliella, which belongs to the basal ditrysian moth line. Using de novo transcriptome sequencing combined with mass spectrometry (MS)-based proteomics, we detected more than 100 secretory proteins in the silk cocoons. Fibroin, sericins, and protease inhibitors were found to be the most abundant proteins, along with several novel candidate silk components. We also verified the tissue and developmental stage specificity of the silk protein expression and characterized the morphology of both the silk glands and silk in T. bisselliella. Our study provides a detailed analysis of silk in the primitive moth, expands the known set of silk-specific genes in Lepidoptera, and helps to elucidate their evolutionary relationships.


Assuntos
Evolução Biológica , Mariposas , Seda , Animais , Fibroínas/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/genética , Larva/metabolismo , Larva/fisiologia , Mariposas/genética , Mariposas/metabolismo , Mariposas/fisiologia , Inibidores de Proteases/metabolismo , Proteômica/métodos , Sericinas/metabolismo , Seda/química , Seda/genética , Seda/metabolismo
12.
Int J Parasitol ; 51(5): 327-332, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33307002

RESUMO

We provided the first known evidence of the presence and release of extracellular vesicles in adults of important model tapeworm Hymenolepis diminuta. Two different subtypes have been observed on the surface of the worm and among the secretory products confirmed by several microscopical methods. Proteomic analysis revealed the presence of parasite-specific proteins as well as those of the host in purified extracellular vesicles. Among the protein cargo, we identified potential drug targets, vaccine candidates and H. diminuta antigens. Finally, the protein composition further revealed proteins participating in the endosomal complex required for transport-dependent biogenesis pathway.


Assuntos
Infecções por Cestoides , Vesículas Extracelulares , Hymenolepis diminuta , Hymenolepis , Animais , Interações Hospedeiro-Parasita , Proteômica
13.
Proc Natl Acad Sci U S A ; 116(10): 4316-4325, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30782830

RESUMO

Vertebrate primary cilium is a Hedgehog signaling center but the extent of its involvement in other signaling systems is less well understood. This report delineates a mechanism by which fibroblast growth factor (FGF) controls primary cilia. Employing proteomic approaches to characterize proteins associated with the FGF-receptor, FGFR3, we identified the serine/threonine kinase intestinal cell kinase (ICK) as an FGFR interactor. ICK is involved in ciliogenesis and participates in control of ciliary length. FGF signaling partially abolished ICK's kinase activity, through FGFR-mediated ICK phosphorylation at conserved residue Tyr15, which interfered with optimal ATP binding. Activation of the FGF signaling pathway affected both primary cilia length and function in a manner consistent with cilia effects caused by inhibition of ICK activity. Moreover, knockdown and knockout of ICK rescued the FGF-mediated effect on cilia. We provide conclusive evidence that FGF signaling controls cilia via interaction with ICK.


Assuntos
Cílios/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Animais , Sistemas CRISPR-Cas , Fatores de Crescimento de Fibroblastos/metabolismo , Células HEK293 , Proteínas Hedgehog/metabolismo , Humanos , Camundongos , Camundongos Knockout , Modelos Animais , Simulação de Acoplamento Molecular , Células NIH 3T3 , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/genética , Proteômica , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/genética , Transdução de Sinais
14.
Insect Biochem Mol Biol ; 106: 28-38, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30448349

RESUMO

Lepidopteran silk is a complex assembly of proteins produced by a pair of highly specialized labial glands called silk glands. Silk composition has been examined only in a handful of species. Here we report on the analysis of silk gland-specific transcriptomes from three developmental stages of the greater wax moth, Galleria mellonella, combined with proteomics, Edman microsequencing and northern blot analysis. In addition to the genes known earlier, we identified twenty seven candidate cDNAs predicted to encode secretory proteins, which may represent novel silk components. Eight were verified by proteomic analysis or microsequencing, and several others were confirmed by similarity with known silk genes and their expression patterns. Our results revealed that most candidates encode abundant secreted proteins produced by middle silk glands including ten sericins, two seroins, one or more mucins, and several sequences without apparent similarity to known proteins. We did not detect any novel PSG-specific protein, confirming that there are only three fibroin subunits. Our data not only show that the number of sericin genes in the greater wax moth is higher than in other species thus far examined, but also the total content of soluble proteins in silk is twice as high in G. mellonella than in B. mori or A. yamamai. Our data will serve as a foundation for future identification and evolutionary analysis of silk proteins in the Lepidoptera.


Assuntos
Proteínas de Insetos/genética , Mariposas/genética , Proteoma , Seda/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Mariposas/crescimento & desenvolvimento , Mariposas/metabolismo , Mucinas/química , Mucinas/genética , Mucinas/metabolismo , Filogenia , Alinhamento de Sequência , Sericinas/química , Sericinas/genética , Sericinas/metabolismo , Seda/metabolismo
15.
Anim Reprod Sci ; 192: 280-289, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29610058

RESUMO

Fish sperm cryopreservation is a well-established technique allowing for artificial insemination on a commercial scale. The extent of proteome alterations in seminal plasma and sperm due to cryopreservation, however, is not known. This study was conducted to evaluate the effect of cryopreservation on motility variables of sterlet Acipenser ruthenus sperm and to detect the differences in protein profiles of fresh and cryopreserved sterlet sperm and seminal plasma. Fresh sperm had 89 ±â€¯3% motility and 160 ±â€¯14 µm/s curvilinear velocity at 15 s post-activation. The motility rate of cryopreserved sperm (37 ±â€¯5%) was less at 15 s post-activation. No difference (ANOVA; P > 0.05) in mean curvilinear velocity of fresh and cryopreserved sperm was detected. The protein profiles of seminal plasma and sperm were characterized using comparative proteomics to determine the influence of cryopreservation. Six altered protein spots in seminal plasma and thirteen altered spots in sperm were detected in fresh and thawed sperm. Subsequent protein characterization suggested that the proteins identified were involved in sperm metabolism, cytoskeleton, and stress response. The results broaden the understanding of the effects of cryopreservation and identify the proteins associated with cryo-injury. These data may help to determine the function of altered proteins and provide new insights into improving sperm cryopreservation.


Assuntos
Criopreservação/veterinária , Peixes/fisiologia , Proteoma , Preservação do Sêmen/veterinária , Motilidade dos Espermatozoides , Espermatozoides/fisiologia , Animais , Masculino , Transcriptoma
16.
Plant Physiol ; 176(4): 2931-2942, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29463774

RESUMO

Photosystem II (PSII) is a large enzyme complex embedded in the thylakoid membrane of oxygenic phototrophs. The biogenesis of PSII requires the assembly of more than 30 subunits, with the assistance of a number of auxiliary proteins. In plants and cyanobacteria, the photosynthesis-affected mutant 68 (Pam68) is important for PSII assembly. However, its mechanisms of action remain unknown. Using a Synechocystis PCC 6803 strain expressing Flag-tagged Pam68, we purified a large protein complex containing ribosomes, SecY translocase, and the chlorophyll-binding PSII inner antenna CP47. Using 2D gel electrophoresis, we identified a pigmented Pam68-CP47 subcomplex and found Pam68 bound to ribosomes. Our results show that Pam68 binds to ribosomes even in the absence of CP47 translation. Furthermore, Pam68 associates with CP47 at an early phase of its biogenesis and promotes the synthesis of this chlorophyll-binding polypeptide until the attachment of the small PSII subunit PsbH. Deletion of both Pam68 and PsbH nearly abolishes the synthesis of CP47, which can be restored by enhancing chlorophyll biosynthesis. These results strongly suggest that ribosome-bound Pam68 stabilizes membrane segments of CP47 and facilitates the insertion of chlorophyll molecules into the translated CP47 polypeptide chain.


Assuntos
Proteínas de Bactérias/metabolismo , Clorofila/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Ribossomos/metabolismo , Proteínas de Bactérias/genética , Membrana Celular/metabolismo , Eletroforese em Gel Bidimensional , Complexos de Proteínas Captadores de Luz/genética , Mutação , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Complexo de Proteína do Fotossistema II/genética , Ligação Proteica , Synechocystis/genética , Synechocystis/metabolismo
17.
Cell Signal ; 42: 144-154, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29030113

RESUMO

Receptor tyrosine kinases (RTKs) form multiprotein complexes that initiate and propagate intracellular signals and determine the RTK-specific signalling patterns. Unravelling the full complexity of protein interactions within the RTK-associated complexes is essential for understanding of RTK functions, yet it remains an understudied area of cell biology. We describe a comprehensive approach to characterize RTK interactome. A single tag immunoprecipitation and phosphotyrosine protein isolation followed by mass-spectrometry was used to identify proteins interacting with fibroblast growth factor receptor 3 (FGFR3). A total of 32 experiments were carried out in two different cell types and identified 66 proteins out of which only 20 (30.3%) proteins were already known FGFR interactors. Using co-immunoprecipitations, we validated FGFR3 interaction with adapter protein STAM1, transcriptional regulator SHOX2, translation elongation factor eEF1A1, serine/threonine kinases ICK, MAK and CCRK, and inositol phosphatase SHIP2. We show that unappreciated signalling mediators exist for well-studied RTKs, such as FGFR3, and may be identified via proteomic approaches described here. These approaches are easily adaptable to other RTKs, enabling identification of novel signalling mediators for majority of the known human RTKs.


Assuntos
Regulação da Expressão Gênica , Proteômica/métodos , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Perfilação da Expressão Gênica , Células HEK293 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Células NIH 3T3 , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Quinase Ativadora de Quinase Dependente de Ciclina
18.
Sci Rep ; 7(1): 13214, 2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-29038514

RESUMO

In oxygenic photosynthesis the initial photochemical processes are carried out by photosystem I (PSI) and II (PSII). Although subunit composition varies between cyanobacterial and plastid photosystems, the core structures of PSI and PSII are conserved throughout photosynthetic eukaryotes. So far, the photosynthetic complexes have been characterised in only a small number of organisms. We performed in silico and biochemical studies to explore the organization and evolution of the photosynthetic apparatus in the chromerids Chromera velia and Vitrella brassicaformis, autotrophic relatives of apicomplexans. We catalogued the presence and location of genes coding for conserved subunits of the photosystems as well as cytochrome b6f and ATP synthase in chromerids and other phototrophs and performed a phylogenetic analysis. We then characterised the photosynthetic complexes of Chromera and Vitrella using 2D gels combined with mass-spectrometry and further analysed the purified Chromera PSI. Our data suggest that the photosynthetic apparatus of chromerids underwent unique structural changes. Both photosystems (as well as cytochrome b6f and ATP synthase) lost several canonical subunits, while PSI gained one superoxide dismutase (Vitrella) or two superoxide dismutases and several unknown proteins (Chromera) as new regular subunits. We discuss these results in light of the extraordinarily efficient photosynthetic processes described in Chromera.


Assuntos
Alveolados/fisiologia , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema I/fisiologia , Alveolados/genética , Evolução Molecular , Deleção de Genes , Espectrometria de Massas , Fotossíntese/genética , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/isolamento & purificação , Filogenia , Superóxido Dismutase/metabolismo , Tilacoides/metabolismo
19.
Philos Trans R Soc Lond B Biol Sci ; 372(1730)2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-28808107

RESUMO

One strategy for enhancing photosynthesis in crop plants is to improve their ability to repair photosystem II (PSII) in response to irreversible damage by light. Despite the pivotal role of thylakoid-embedded FtsH protease complexes in the selective degradation of PSII subunits during repair, little is known about the factors involved in regulating FtsH expression. Here we show using the cyanobacterium Synechocystis sp. PCC 6803 that the Psb29 subunit, originally identified as a minor component of His-tagged PSII preparations, physically interacts with FtsH complexes in vivo and is required for normal accumulation of the FtsH2/FtsH3 hetero-oligomeric complex involved in PSII repair. We show using X-ray crystallography that Psb29 from Thermosynechococcus elongatus has a unique fold consisting of a helical bundle and an extended C-terminal helix and contains a highly conserved region that might be involved in binding to FtsH. A similar interaction is likely to occur in Arabidopsis chloroplasts between the Psb29 homologue, termed THF1, and the FTSH2/FTSH5 complex. The direct involvement of Psb29/THF1 in FtsH accumulation helps explain why THF1 is a target during the hypersensitive response in plants induced by pathogen infection. Downregulating FtsH function and the PSII repair cycle via THF1 would contribute to the production of reactive oxygen species, the loss of chloroplast function and cell death.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Bactérias/genética , Cianobactérias/fisiologia , Fotossíntese , Complexo de Proteína do Fotossistema II/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/metabolismo , Cloroplastos/metabolismo , Cianobactérias/genética , Complexo de Proteína do Fotossistema II/metabolismo , Synechocystis/genética , Synechocystis/fisiologia
20.
J Bone Miner Res ; 32(6): 1309-1319, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28177155

RESUMO

Lysine hydroxylation of type I collagen telopeptides varies from tissue to tissue, and these distinct hydroxylation patterns modulate collagen cross-linking to generate a unique extracellular matrix. Abnormalities in these patterns contribute to pathologies that include osteogenesis imperfecta (OI), fibrosis, and cancer. Telopeptide procollagen modifications are carried out by lysyl hydroxylase 2 (LH2); however, little is known regarding how this enzyme regulates hydroxylation patterns. We identified an ER complex of resident chaperones that includes HSP47, FKBP65, and BiP regulating the activity of LH2. Our findings show that FKBP65 and HSP47 modulate the activity of LH2 to either favor or repress its activity. BiP was also identified as a member of the complex, playing a role in enhancing the formation of the complex. This newly identified ER chaperone complex contributes to our understanding of how LH2 regulates lysyl hydroxylation of type I collagen C-telopeptides to affect the quality of connective tissues. © 2017 American Society for Bone and Mineral Research.


Assuntos
Colágeno Tipo I/metabolismo , Proteínas de Choque Térmico HSP47/metabolismo , Proteínas de Choque Térmico/metabolismo , Lisina/metabolismo , Complexos Multiproteicos/metabolismo , Peptídeos/metabolismo , Pró-Colágeno/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Animais , Linhagem Celular , Chaperona BiP do Retículo Endoplasmático , Estabilidade Enzimática , Humanos , Hidroxilação , Espectrometria de Massas , Camundongos , Modelos Biológicos , Mutação/genética , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/metabolismo , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...